Problems 5: C^{1}-functions and more
C^{1}-scalar-valued functions

1. Define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f(\mathbf{x})=x \sin (x y z)+\exp (y z)$ where $\mathbf{x}=(x, y, z)^{T}$. Prove that f is a Fréchet differentiable function by showing that f is C^{1} on \mathbb{R}^{3}.
2. Define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f(\mathbf{x})=\sin \left(x y^{2} z^{3}\right)$ where $\mathbf{x}=(x, y, z)^{T}$.
i. Prove that f is Fréchet differentiable at $\mathbf{a}=(\pi, 1,-1)^{T}$.
ii. Find the directional derivative $d_{\mathbf{v}} f(\mathbf{a})$ where $\mathbf{v}=(2 / 3,1 / 3,-2 / 3)^{T}$.

The following was Questions 182 on Sheet 4 but now, with C^{1}-functions, we can give a quicker solution.
3. a. By using partial differentiation find the gradient vectors of
i. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \longmapsto x(x+y)$ and
ii. $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \longmapsto y(x-y)$
and show they are everywhere Fréchet differentiable. Find the directional derivatives of f and g at $\mathbf{a}=(1,2)^{T}$ in the direction $\mathbf{v}=(2,-1)^{T} / \sqrt{5}$, justifying your method.
b. Using partial differentiation find the gradient vector of $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $\mathbf{x} \longmapsto x y+y z+x z$ where $\mathbf{x}=(x, y, z)^{T}$, and show it is everywhere Fréchet differentiable. Find the directional derivative of f at $\mathbf{a}=(1,2,3)^{T}$ in the direction $\mathbf{v}=(3,2,1)^{T} / \sqrt{14}$, justifying your method.
4. (Tricky) Recall:

$$
f \text { is } C^{1} \text { at } \mathbf{a} \Longrightarrow f \text { is Fréchet differentiable at } \mathbf{a} \Longrightarrow f \text { continuous at } \mathbf{a} \text {. }
$$

The contrapositive of this is

$$
\begin{equation*}
f \text { not conts at } \mathbf{a} \Longrightarrow f \text { not F-differentiable at } \mathbf{a} \Longrightarrow f \text { is not } C^{1} \text {. } \tag{1}
\end{equation*}
$$

Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{x})=\frac{x y}{x^{2}+y^{2}} \quad \text { if } \quad \mathbf{x} \neq \mathbf{0} ; \quad \text { with } f(\mathbf{0})=0 .
$$

This was shown in Question 11ii on Sheet 1 to not be continuous at $\mathbf{0}$. So, as not to contradict (1), prove that f is not C^{1} at $\mathbf{0}$, i.e. that the partial derivatives are not continuous at $\mathbf{0}$.

C^{1}-vector-valued functions

5. Find the Jacobian matrices of the following functions, show that the functions are everywhere Fréchet differentiable and then find the directional derivatives at the given point \mathbf{a} in the direction \mathbf{v}. In this way check your answers to Questions $5 \& 7$ on Sheet 3 .
i. $\quad \mathbf{f}\left((x, y, z)^{T}\right)=(x y, y z)^{T}, \mathbf{a}=(1,3,-2)^{T}$ and $\mathbf{v}=(-1,1,-2)^{T} / \sqrt{6}$,
ii. $\quad \mathbf{f}\left((x, y)^{T}\right)=\left(x y^{2}, x^{2} y\right)^{T}, \mathbf{a}=(2,1)$ and $\mathbf{v}=(1,-1)^{T} / \sqrt{2}$.

Chain Rule

6. Let

$$
\mathbf{f}(\mathbf{x})=\binom{x^{2} y}{x y^{2}} \quad \text { and } \quad \mathbf{g}(\mathbf{u})=\binom{u+v}{u-v}
$$

for $\mathbf{x}=(x, y)^{T}$ and $\mathbf{u}=(u, v)^{T}$.
i. Calculate $\mathbf{f}(\mathbf{g}(\mathbf{u}))$ and thus find the Jacobian matrix $J(\mathbf{f} \circ \mathbf{g})(\mathbf{a})$ where $\mathbf{a}=(1,-2)^{T}$.
ii. Alternatively find $J \mathbf{f}(\mathbf{b})$, with $\mathbf{b}=\mathbf{g}(\mathbf{a})$, and $J \mathbf{g}(\mathbf{a})$ and use the Chain Rule to calculate $J(\mathbf{f} \circ \mathbf{g})(\mathbf{a})$
7. Use the Chain Rule to find the Fréchet derivative of $\mathbf{f} \circ \mathbf{g}$ at the given point a for each of the following.
i. i. With $\mathbf{x}=(x, y)^{T}, \mathbf{u}=(u, v)^{T} \in \mathbb{R}^{2}$,

$$
\mathbf{f}(\mathbf{x})=\binom{x^{2} y}{x-y} \quad \text { and } \quad \mathbf{g}(\mathbf{u})=\binom{3 u v}{u^{2}-v}
$$

at $\mathbf{a}=(2,1)^{T}$.
ii. ii. With $\mathbf{x}=(x, y, z)^{T} \in \mathbb{R}^{3}, \mathbf{u}=(u, v)^{T} \in \mathbb{R}^{2}$,

$$
\mathbf{f}(\mathbf{x})=\binom{x y}{y z} \quad \text { and } \quad \mathbf{g}(\mathbf{u})=\left(\begin{array}{c}
u v^{2}-v \\
u^{2} \\
1 / u v
\end{array}\right)
$$

$$
\text { at } \mathbf{a}=(2,1)^{T} .
$$

8. Consider the Chain Rule in the case

$$
\mathbb{R}^{p} \xrightarrow{\mathrm{~g}} \mathbb{R}^{n} \xrightarrow{f} \mathbb{R},
$$

so f is scalar-valued. Assume \mathbf{g} is Fréchet differentiable at $\mathbf{a} \in \mathbb{R}^{p}$ and f is Fréchet differentiable at $\mathbf{b}=\mathbf{g}(\mathbf{a}) \in \mathbb{R}^{m}$. The Chain Rule says that $f \circ \mathbf{g}$ is Fréchet differentiable at \mathbf{a} and $J(f \circ \mathbf{g})(\mathbf{a})=J f(\mathbf{b}) J \mathbf{g}(\mathbf{a})$.

Think of the coordinates in \mathbb{R}^{p} as x^{i} for $1 \leq i \leq p$, while in \mathbb{R}^{n} they will be y^{j} for $1 \leq j \leq n$. Show that the Chain Rule can be written as

$$
\frac{\partial f \circ \mathbf{g}}{\partial x^{i}}(\mathbf{a})=\sum_{k=1}^{n} \frac{\partial f}{\partial y^{k}}(\mathbf{b}) \frac{\partial g^{k}}{\partial x^{i}}(\mathbf{a})
$$

for $1 \leq i \leq p$.
Extremal values of $d_{\mathbf{v}} f(\mathbf{a})$.
Here we find $\max _{\mathbf{v}:|\mathbf{v}|=1} d_{\mathbf{v}} f(\mathbf{a})$ and $\min _{\mathbf{v}:|\mathbf{v}|=1} d_{\mathbf{v}} f(\mathbf{a})$, that is the directions of maximum and mimimum rate of change of f as we move away from \mathbf{a}.
9. Suppose that $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Fréchet differentiable on U and $\mathbf{a} \in U$. Prove that the directional derivative $d_{\mathbf{v}} f(\mathbf{a})$ has a
i. maximum value of $|\nabla f(\mathbf{a})|$ when \mathbf{v} is in the direction of $\nabla f(\mathbf{a})$ and
ii. a minimum value of $-|\nabla f(\mathbf{a})|$ when \mathbf{v} is in the direction of $-\nabla f(\mathbf{a})$.

Hint for any vectors we have $\mathbf{a} \bullet \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$ where θ is the angle between the vectors \mathbf{a} and \mathbf{b}.
10. Suppose the temperature at a point $(x, y, z)^{T}$ in a metal cube is given by

$$
T=80-60 x e^{-\frac{1}{20}\left(x^{2}+y^{2}+z^{2}\right)},
$$

where the centre of the cube is taken to be $(0,0,0)^{T}$. In which direction from the origin is the rate of change of temperature greatest? The least?

Additional Questions 5

11 Define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $\mathbf{x} \mapsto x y^{2} z$.
i. Show that f is a C^{1}-function on \mathbb{R}^{3}.
ii. Calculate $\nabla f(\mathbf{a}) \bullet \mathbf{v}$ with $\mathbf{a}=(1,3,-2)^{T}$ and $\mathbf{v}=(-1,1,-2)^{T} / \sqrt{6}$. Explain any similarity with Question 4 Sheet 3.
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(\mathbf{x})=\frac{\sin \left(x^{2} y^{2}\right)}{x^{2}+y^{2}} \quad \text { if } \mathbf{x}=(x, y)^{T} \neq \mathbf{0} ; \quad f(\mathbf{0})=0
$$

i. Find the partial derivatives of f at all points $\mathbf{x} \in \mathbb{R}^{2}$.

Hint For $\mathbf{x}=\mathbf{0}$ you will have to return to the definition of partial derivative.
ii. Prove that f is a C^{1}-function on \mathbb{R}^{2} with Fréchet derivative $d f_{\mathbf{0}}=\mathbf{0}$: $\mathbb{R}^{2} \rightarrow \mathbb{R}$ at the origin.
Hint You may make use of $|\sin \theta| \leq|\theta|$ for all θ.
13. Further practice on the Chain Rule Use the chain rule to find the derivative of $\mathbf{f} \circ \mathbf{g}$ at the point \mathbf{c} for each of the following. Give your answers in the form $d(\mathbf{f} \circ \mathbf{g})_{\mathbf{c}}(\mathbf{t})$.

$$
\begin{aligned}
& \text { i. } \mathbf{f}\left((x, y)^{T}\right)=\left(x^{2} y, x-y\right)^{T}, \mathbf{g}\left((u, v)^{T}\right)=\left(3 u v, u^{2}-4 v\right)^{T}, \mathbf{c}=(1,-2)^{T}, \\
& \text { ii. } \mathbf{f}\left((x, y, z)^{T}\right)=(4 x y, 3 x z)^{T}, \mathbf{g}\left((u, v)^{T}\right)=\left(u v^{2}-4 v, u^{2}, 4 / u v\right)^{T}, \mathbf{c}= \\
& (-2,3)^{T} \\
& \text { iii. } \mathbf{f}\left((x, y)^{T}\right)=\left(3 x+4 y, 2 x^{2} y, x-y\right)^{T}, \mathbf{g}\left((u, v, w)^{T}\right)=\left(4 u-3 v+w, u v^{2}\right)^{T}, \\
& \quad \mathbf{c}=(1,-2,3)^{T} \text {. }
\end{aligned}
$$

14. Revisit Question 17 iii on Sheet 3. Define the functions $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $(x, y)^{T} \mapsto(x+y, x-y, x y)^{T}$ and $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $(x, y, z)^{T} \mapsto x y^{2} z$. Calculate, using the Chain Rule, the directional derivative of $h \circ \mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at $\mathbf{a}=(2,-1)^{T}$ in the direction $\mathbf{v}=(1,-2)^{T} / \sqrt{5}$.
15. Assume $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is Fréchet differentiable at $\mathbf{q}=(2,3)^{T}$ with

$$
J \mathbf{F}(\mathbf{q})=\left(\begin{array}{rr}
-1 & 2 \\
2 & -3 \\
0 & 4
\end{array}\right)
$$

Assume also that $\mathbf{F}(\mathbf{q})=\left(\begin{array}{lll}2 & -1 & 4\end{array}\right)^{T}$.
Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}: f(\mathbf{x})=|\mathbf{F}(x)|$. Prove that f is Fréchet differentiable at \mathbf{q} and find $d f_{\mathbf{q}}(\mathbf{t})$ for $\mathbf{t} \in \mathbb{R}^{2}$.
16. A heat-seeking insect always moves in the direction of the greatest increase in temperature. Describe the path of a heat-seeking insect placed at $(1,1)^{T}$ on a metal plate heated so that the temperature at $\mathbf{x}=(x, y)^{T}$ is given by

$$
T(\mathbf{x})=100-40 x y e^{-r(\mathbf{x})},
$$

where $r(\mathbf{x})=\left(x^{2}+y^{2}\right) / 10$.
What if the insect starts at $(3,2)^{T}$? Or the origin $\mathbf{0}$?

